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We present a theoretical study of the conductance fluctuations of an electrode where a cluster is
grown though electrodeposition, in a diffusion-limited regime. We show that the distribution of conduc-
tance jumps MN(8g) measured during the deposition process from a pointlike seed can be analyzed using
the multifractal nature of the current flowing at the surface of the cluster. The distribution /N consists of
a power law for large jumps. We derive the relation between the exponent of this distribution and the

multifractal spectrum.
PACS number(s): 81.15.Pq, 64.60.Ak
INTRODUCTION

We present in this paper an analysis of the conduc-
tance noise which occurs in electrodeposition in the re-
gime where it can be modeled by the diffusion-limited ag-
gregation (DLA) model [1] or its generalization, the
dielectric-breakdown (DB) model [2]. Many reviews
present the essential results on these models and their ap-
plication to a variety of physical situations [3]. In partic-
ular, the multifractal properties of the growth probabili-
ties that result from these models have received much at-
tention. However, no easily accessible properties con-
nected with these growth processes depend crucially on
the multifractal growth properties. It is the aim of this
paper to present just such a property. As we will show,
the statistical distribution of noise in the conductance
during the process of electrodeposition follows a power
law whose exponent is a direct reflection of an underlying
multifractal distribution.

The DB model can be briefly presented as a stochastic
model of fractal cluster growth. At any stage of its
growth the cluster is modeled as a perfect electrode (with
a zero resistivity) and it is immersed in a very large (ideal-
ly infinite) Ohmic medium with a finite conductivity. The
cluster is set to zero potential, whereas at large distance,
a unit potential is applied. The cluster grows according
to the following probabilistic rule: a new particle is add-
ed to the cluster with a probability proportional to the
potential at this point raised to the power 7. This is the
free parameter of the model. DLA is recovered for n=1.
As the cluster grows, the conductance of the medium be-
tween the cluster and the external electrode increases
each time a new particle is added. This increase, howev-
er, exhibits strong short-time fluctuations. It is these
fluctuations we analyze in the following.

Earlier studies have focused on various fluctuations
occurring in DLA or DB models with a particular em-
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phasis on “1/f noise. In particular, Evertz and Mandel-
brot [4] have reported numerical results on the fluctua-
tions of some geometrical features—such as the location
of the longest branch—of a cluster grown in a strip
geometry. Van Damme [5] has experimentally studied
the growth rate along the boundary of the cluster in
viscous fingering experiments. The power spectrum of
this growth rate as a function of the curvilinear abscissa
has been shown to reveal some original power-law
behavior. Finally, Louis and Guinea [6], while studying a
closely related fracture model, have studied numerically
the time evolution of the stresses along the cluster (i.e.,
the crack in this case) and the growth probability of ac-
tive sites. The theoretical analysis we present below can
be simply adapted to this problem. However, the data
were not quantitatively discussed in this reference and
thus no comparison can be made.

Analogous results can also be used in the context of the
invasion with a nonviscous fluid of a porous media sa-
turated by a more viscous one. DLA has been proposed
as a model for viscous fingering in some flow regimes [7].
Inasmuch as this modeling is correct, the fluctuations of
permeability during the invasion can also be described by
the formalism developed below. A somewhat similar
treatment can also be performed in a very different
framework, e.g., percolation [8,9]. Extension of the con-
cepts presented here can also be used in the field of frac-
ture of brittle heterogeneous materials for the analysis of
acoustic emission [10].

MULTIFRACTALITY OF JUMPS AND SCALING

It is now well known that the distribution of growth
probabilities at the surface of DLA or DB clusters is mul-
tifractal; see the review by Meakin in Ref. [3]. If 7 is the
radius of the cluster, and p a growth probability,
n(p,r)dp is the number of sites whose growth probability
is in the range [p,p +dp]. n(p,r) is explicitly dependent
on r. This is where the multifractal properties of n (p,r)
become important: By a change of variable, we may iso-
late the r dependence by writing
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_ _ log(p)
p log(r) ’ a
fila,)= log[pn(p,r)]
L log(r) '

As r approaches infinity, f,(a,) approaches a universal
function which is independent of r (provided the outer
boundary is far enough from the cluster). The number of
sites n (p,r) is multiplied by p in the above expression as
the natural density to use is the distribution of log(p)
rather than simply p. Another equivalent way of intro-
ducing the multifractal formalism is to consider the scal-
ing of different moments of the growth probability,
M p(q):z,-pil ( not normalized by the number of terms in
the sum). Those moments scale with r as a power law
with exponent 7,(¢q). Both functions 7,(q) and fp(a)
contain the same information and are related through the
Legendre transform,

__afp(a)
3
7,(q)=f,(a)—qa .

)

The local growth probability is by definition a simple
power law of the voltage at a given site. Thus the mul-
tifractal nature of the probability implies in turn a mul-
tifractal character of the distribution of local voltages v at
the surface of the cluster. Computing the voltages using
a constant total current condition makes it possible to re-
late v;=p;'//M,(1/7).

We are interested in the change of conductance that
will occur when a new site is added to the cluster. If the
conductance increases from g to g’, we define the conduc-
tance jump as 8g =(g'—g). It is intuitive that g will be
related to the local voltage v at the growth site. More
precisely, using Cohn’s theorem it is possible to establish
that 6g will be proportional to the square of the voltage,
v%, when the latter is small. It seems that this propor-
tionality is valid even when the voltage is not
infinitesimal. Thus we can relate the conductance jump
&g to the local growth probability

8g <p/1/M,(1/9)* . 3)

As a simple consequence of the above equation, the dis-
tribution of conductance jumps that would occur if we
add any surface site to the cluster is also multifractal.
Thus this distribution can be characterized through a
spectrum f,y(a,), by using the following definition of
these variables:

_ _ log(dg)
g 1
og(r) @)
fila,)= log[6gn(8g,r)]
g e log(r) )

The connection with the previous multifractal spectrum
is through the following relations:

a,=(2/n)a,+21,(1/7),
Sfelag)=f,((n/2)a, +37,(1/7)),

(5)
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i.e., the a scale is simply dilated by a factor 2/n and
translated by 27,(1/7) whereas the f scale is unchanged.
This is a simple consequence of Eq. (3).

RESCALING OF THE SPECTRUM
FOR INTERMEDIATE STAGES

It is important to note that the overall conductance of
the medium depends on its geometry, and hence the size
of the system L, as well as the radius of gyration at a
given stage r. The difference 6g does not depend on L, as
long as r /L << 1. This can be argued for in the following
way: If we increase L to L’, the system can be seen as
consisting of two parts in series, from the origin to L, and
from L to L’. The approximation of having an equipo-
tential at radius L is expected to be increasingly fulfilled
as L increases. The resistance jump occurring during one
elementary growth event will thus be independent of the
resistance of the L to L’ part, the latter being canceled by
the difference. Using again the limit » /L <<1 we expect
that the total change in conductance from the initial seed
to the developed cluster will be small. As a result, the
conductance jump 8g is simply proportional to the resis-
tance jump, with a proportionality constant equal to the
square of the initial conductance of the system.

We will have to consider the evolution of the conduc-
tance at different cluster radii ». Let us introduce a refer-
ence radius R which in practice will be the final stage of
the cluster, with the constraint R <<L. Although the
natural variable to use for a fixed r is the expression for a
and f introduced in Egs. (1) and (4), the variability of r in
the range 1—for the initial seed — to R requires
that a fixed reference radius, e.g., R, should be chosen.
We thus introduce as before the reduced variable
a=—log(6g)/log(R), and the intermediate notation
B=—log(dg)/log(r). We can simply express

B=a/\, (6)

where A=log(r)/log(R) is a scaling factor. Similarly, the
number of growth sites which give rise to a jump 8g for a
radius r is

£4B)_ o Afpla/d)

Sgn(dg,r)e=<r R (6")

It is possible to interpret the transformation of Egs. (6)
and (6') in simple geometrical terms. Being given the
spectrum for a radius R, the spectrum relative to a radius
r can be obtained by a simple dilation of the previous
function in the f-a plane. The center of the dilation is
the origin and the amplitude of the dilation is A. This
construction is illustrated in Fig. 1.

What is the probability p(8g) to have a conductance
jump equal to &g, at a given stage where the radius of the
cluster is ? This probability is given by the probability
to pick a bond with the correct voltage times the number
of these bonds; thus, using the definition of f and the re-
lation (3), we can write

p(8g)5g = r'sP(sg)172 . (7)

We have introduced the probability p(8g )6g which corre-
sponds to the distribution of log(8g ) rather than of &g, so
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f=log[n(8 g)]1og(R)
A

-

o=-log(d g)ﬂog(R)

FIG. 1. Rescaling of the multifractal spectrum of the con-
ductance jumps at a given stage of growth with radius », com-
pared to that measured at the reference radius R.

as to be consistent with the usual definition of f, e.g., in
Eq. (1). We choose a normalization p so that the ex-
ponent 7(1)=0. The first moment is governed by the
maximum of the probability distribution p(8g)dg. This
maximum is reached for a value of 8 such that

fiB=n/2, (8)

where f’ denotes the derivative of f. We thus introduce
v as the root of f,(y)=n/2, so as to simplify the nota-
tion. We note that the parameter y is uniquely defined
for a given 7 parameter. Thus expression (7) can be
rewritten as

p(8g)bg =R AP =elrAl) 9)
where we have introduced the function
cp(a,k)=kfg(a/}u)—(n/2)a . (10)

With the normalization introduced in Eq. (9), the max-
imum of p(5g )dg is 1.

Let us note that in the case of 7=1, i.e., for the DLA
case, we can make use of an exact result concerning y. It
has been shown rigorously by Makarov [11] that the first
moment of the growth probability (for which 7=1 by
normalization) is characterized by a,=1 and f,=1. Us-
ing the correspondence between p and 6g given in Eq. (5),
we deduce that y =2. Moreover, still for n=1, the ex-
pression @(yA,A) in Eq. (9) which has been added for
normalization is identically 0.

INTEGRATION THROUGH THE ENTIRE
GROWTH PROCESS

In order to obtain the distribution of the conductance
jumps during the growth process, it suffices to integrate
the probability given in Eq. (9). The cluster is fractal,
and thus there is a power-law relation between the num-
ber of sites in the cluster m (r), and its radius r

m(r)«r?, (11)

The measure needed to integrate p is dm. Using the vari-
ables introduced above, the measure can be written

dm =DRPMog(R)d\ . (12)

/240
\ n/2

™(n/2)

ay o

(Mm/2)-D

FIG. 2. Geometrical construction of the exponent 6 of the
conductance jump distribution integrated during the entire
growth process. By drawing the tangent to the spectrum with a
slope 11/2 we deduce ¥ and 7(7/2). From the f value of the
apex we get the fractal dimension D. The difference 7(1/2)—D
being known, we construct the tangent to the spectrum which
goes by the point (a=0,f=7(n/2)—D). The difference of
slopes between the two tangents gives the conductance jump
distribution exponent 6.

The number of conductance jumps &g recorded
throughout the entire growth is characterized by the dis-
tribution, NV(8g )d 8g, which can be written

N(8g)5g =D log(R) fo’R plah=glyhM+Dhgy (13)

We now estimate the integral (13) using the steepest-
descent method. The maximum of the exponent of R in
the integral is reached for a value of A which satisfies the
equation

a

A

a

y |
_Ifg —

=fo¥)—vfely)—D . (14)

Using the expression for 7(g(a)) given in Eq. (2), we can
simplify the above expression to

1(qla/A)=1,(q(y) =D . (14')

Equation (14') allows a simple geometrical construc-
tion which is illustrated in Fig. 2. From Eq. (2), it can be
seen that 7(g(a)) is the f coordinate of the intersection
between the tangent to the spectrum at the point
(a,f(a)) with the f axis. The slope of the tangent is
g(a). As an example 7(0) is the fractal dimension of the
cluster, and it corresponds to the f value of the apex of
the spectrum. The y parameter can be obtained by look-
ing for the abscissa of the tangent point with a slope /2
[see Eq. (8)]. The quantity 7,(g(y))=7,(n/2) can there-
fore easily be read off the graph. Knowing 7,(7/2) and
D we can search for the root a of

T(q(a))=7,(q(y))—D, (15)

by drawing the tangent to the spectrum knowing the in-
tersection of the tangent with the f axis.

We have introduced the root @ in Eq. (15), from which
we deduce the value of A* which maximizes the expres-
sion to integrate, A*=a/a. We now substitute this ex-
pression for N,
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N(8g)8g <V 10g(8g)(8g)? , (16)

where we have neglected the constant prefactor, with the
expression for the exponent
fela)+D —1,(n/2)

6= 4 n/2

=fia)—n/2. (17)

Equation (16) is the main result of this paper. Apart
from a weak log(8g)!/? correction, the distribution of
conductance jumps follows a power-law behavior with a
universal exponent which can be obtained from the mul-
tifractal spectrum of the growth probability at a fixed
stage of growth. The final expression of 6 given in Eq.
(17) can again be simply interpreted in Fig. 2. The
difference of slopes between the two tangents at a=a and
a=1y gives 0.

It should also be noted that Eq. (15) may have no solu-
tion. Such will be the case whenever the origin lies below
the multifractal spectrum f,(a), or equivalently when
f¢(0)>0. For DLA, the minimum value of a is strictly
positive, and hence there exist a solution. The result dis-
cussed above is therefore valid. However, for large 7 it is
conceivable that the largest potential drop at the border
of the cluster increases with the radius of gyration r. In
this case, the steepest-descent method obviously fails be-
cause Eq. (15) has no root, and a simple analysis shows
that the integration through the entire growth is dom-
inated by the latest stage. Therefore, in this case, N(8g)
can be identified directly with n(8g,r).

CONCLUSION

Equations (16) and (17) constitute our main results:
The histogram of the conductance jumps occurring dur-
ing the growth of the electrode through an electrodeposi-
tion process consists essentially in a power law, the ex-
ponent of which can be computed from the multifractal
spectrum of growth probabilities occurring at a reference
radius. This law is universal in the same sense as the
multifractal spectrum of the local probabilities is. The
exponent 0 is expected to vary with the parameter 7, as
most geometrical properties do. The fact that the distri-
bution of the jumps is multifractal has the practical
consequence that the domain of validity of the power-law
regimes is increasing with the size of the cluster.

It would be of interest to measure this distribution ex-
perimentally, and thus to have access to some informa-
tion on the multifractal spectrum of the growth probabil-
ities without having to resort to local measurement of
voltages or currents.
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